
AMY RESEARCH LABORATORY

Reality Check on OpenMP
Implementations

by Shirley Moore, Daniel Pressel,
and Juan Carlos Chaves

ARL-TR-2718 April 2002

Approved for public release; distribution is unlimited.

20020514 127

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-27l8 April 2002

Reality Check on OpenMP
Implementations

Shirley Moore
University of Tennessee-Knoxville

Daniel Pressel
Computational and Information Sciences Directorate, ARL

Juan Carlos Chaves
HPTi/Major Shared Resource Center, ARL ,

Approved for public release; distribution is unlimited.

Abstract

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. This report
discusses experiences using OpenMP implementations on Shared Resource
Center (SRC) platforms. The experiences include running OpenMP benchmarks,
as well as using OpenMP with applications. Tools available for debugging and
analyzing OpenMP programs are also covered. Most of the results in this report
should be considered preliminary and the basis for further investigation.

ii

Acknowledgments

This work was supported by the progra mming, education, and training (PET)
component of the Department of Defense (DOD) High Performance Computing
Modernization Program (HPCMP). Additional support was provided by the
U.S. Army Research Laboratory-Major Shared Resource Center (ARL-MSRC) and
the Common High Performance Computing Software Support Initiative (CHSSI).

This work was made possible through a grant of computing time from the DOD
HPCMP and the generous support of several of the Shared Resource Centers,
including the ARL-MSRC and the Distributed Center located at the Space and
Naval Warfare Systems Center.

. . .
111

. .

INTENTIONALLYLEFTBLANK.

iv

Contents

Acknowledgments
. . .
111

List of Figures vii

1.

2.

3.

4.

5.

6.

Introduction

Benchmark Results

Lessons Learned

Tools for OpenMP

Conclusions and Future Work

References

1

1

3

4

5

13

Distribution List

Report Documentation Page

15

19

V

List of Figures

Figure 1. Scheduling overheads on an SGI Origin 3000 with the vendor
compiler . 6

Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide
compiler . 6

Figure 3. Scheduling overheads on a Sun El0000 with the vendor
compiler . 7

Figure 4. Scheduling overheads on a Sun El0000 with the Guide
compiler . 7

Figure 5. Scheduling overheads on an IBM Power3 SMP with the vendor
compiler . 8

Figure 6. Synchronization overheads on an SGI Origin 3000 with the
vendor compiler . 8

Figure 7. Synchronization overheads on an SGI Origin 3000 with the
Guide compiler . 9

Figure 8. Synchronization overheads on a Sun El0000 with the vendor
compiler . 9

Figure 9. Synchronization overheads on a Sun El0000 with the Guide
compiler . 10

Figure 10. Synchronization overheads on an IBM Power3 SMP with the
vendor compiler . 10

Figure 11. PBN BT benchmark on an SGI Origin 3000 with the vendor
compiler . 11

Figure 12. PBN CG benchmark on an SGI Origin 3000 with the vendor
compiler . 11

Figure 13. PBN LU benchmark on an SGI Origin 3000 with the vendor
compiler . 12

Figure 14. PBN SP benchmark on an SGI Origin 3000 with the vendor
compiler . 12

Vii

. . .
Vlll

1. Introduction

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors who
make up the OpenMP Architecture Review Board (ARB), OpenMP is intended
to give shared-memory parallel programmers a portable, scalable programming
model and simple interface for developing parallel applications for platforms
ranging from the desktop to the Supercomputer. (See reference [l] for more
information about OpenMP.) OpenMP compilers used here include the
following:

l SGI MIPS&o 7.3.1.1 Fortran 77 and Fortran 90 compilers on an SGI Origin
2000 and an SGI Origin 3000 running IRIX 6.5;

l IBM XL 7.1 Fortran 77/90/95 compilers on an IBM Power3 SMP with eight
processors per node running AIX 4.3;

l Sun Forte 6 update 1 Fortran 95 on a Sun HPClOOOO running Solaris 8; and

l ISA1 Guide 3.9 Fortran 77 and Fortran 90 compilers on SGI, IBM, and Sun
platforms. :

2. Benchmark Results

The EPCC OpenMP microbenchmarks are intended to measure the overheads of
synchronization and loop scheduling in the OpenMP run-time library [2]. The
overhead measurements can be used to compare the efficiency of the run-time
libraries of different OpenMP implementations and give guidance on the
performance implications of choosing between semantically equivalent directives
(e.g., CRITICAL vs. ATOMIC vs. lock routines). Much of these benchmarks
address the barrier implementations in OpenMP. However, the overhead itself
may not be an indication of how well an individual OpenMP program will
perform. An application program will use a whole ensemble of directives, and its
performance cannot be predicted on the basis of certain directives alone.
However, these benchmarks are meant to give some guidance on choosing
directives to the application programmer and give indications to the vendors as
to where improvement in their OpenMP implementations may be needed. A
detailed explanation of the measurement methodology can be found in
reference [2]. A brief explanation is given in this report as follows. The overhead

of a parallel program is defined as Tp-Ts/p, where Tp is the parallel execution
time, Ts the serial execution time, and p is the processor count. The overheads of
a number of directives are measured in this simple fashion. Overheads are
reported in processor clock cycles to allow comparison between different
systems.

The loop scheduling benchmark measures overheads for STATIC, DYNAMIC,
and GUIDED schedules with different chunk sizes. Results for the Sun ElOOOO,
SGI Origin 3000, and IBM Power3 SMP for both vendor and KAI Guide
compilers (where possible) are shown in Figures 1 through 5. From these
figures, it can be seen that dynamic scheduling is expensive, especially for small
chunk sizes. Since the default chunk size is 1 for most OpenMP
implementations, users need to be careful to set the chunk size to a larger value
when using dynamic scheduling. On the Origin, the overheads of dynamic
scheduling are so large as to render it useless, at least with the default setup.

The synchronization benchmark measures synchronization overheads for several
barrier types of directives: parallel, for, parallel for, barrier, and single. The
overheads of each of the operations are measured for different numbers of
threads. Results for the Sun ElOOOO, SGI Origin 3000, and IBM Power3 SMP for
both vendor and KAI Guide compilers (where possible) are shown in Figures 6
through 10.

The PBN, or “Programmin g Baseline for NPB,” consists of three sets of source
codes based on the NASA Advanced Super (NAS) Computing Division Parallel
Benchmark version 2.3. The PBN contains an improved sequential
implementation, a sample OpenMP implementation, and a sample HPF
implementation. The directives inserted for the OpenMP implementation reflect
a programmer’s parallelization and data distribution strategy, while the compiler
is responsible for implementation and optimization. These benchmarks
complement the EPCC benchmarks by providing application-oriented
performance measures. Each application in the benchmark has three problem
sizes, which are simply called A, B, and C, where C is the largest problem. We
looked at the Mflop rate for each problem set as a function of the number of
processors. The OpenMP version of the PBN benchmarks has been rewritten by
the Real World Computing Program (RWCP)/Omni group in Japan to eliminate
some problems. We have not been able to run all size C problems on all of the
platforms due to memory limitations and occasional segmentation faults. We
will follow up on these problems. Some preliminary results for the Origin 3000
are shown in Figures 11 through 14. These are with STATIC scheduling and the
default chunk size. The OpenMP versions of most of the benchmarks appear to
scale well for larger problem sizes, although the results shown here are
somewhat noisy. We plan to rerun these benchmarks to try to achieve more
reliable results and to compare scaling with the (message-passing interface)
versions.

3. Lessons Learned

l OpenMP private variables are allocated on a thread’s stack. The default
stack size may not be large enough for parallel regions with large numbers
of private variables or regions that call subroutines with large numbers of
local variables which are automatically private. Segmentation faults are a
frequent consequence of using a stack size that is too small. Both
environment variables and run-time routines may be used to modify the
default stack size, although the manner in which this is done is
implementation dependent. On the Origin 3000 with the MIESpro
compiler, setting the Ml?-STACK-OVERFLOW environment variable
causes the OpenMP run-time system to automatically detect and report
stack overflow errors at rim-time. The Ml’-SLAVE-STACKSIZE variable
or the. Ml?-SET-SLAVESTACKSIZE library routine can be used to request
larger stack sizes. Similar facilities are available with some other OpenMP
compilers (e.g., KMP-STACKSIZE with Guide).

l Hewlet-Packard currently does not support OpenMP for C. Its support of
OpenMP for Fortran is incomplete and less than perfect. In particular, its
error messages are extremely poor and generally only state that an internal
error has occurred. This behavior insinuates that the compiler is broken
when, in fact, it could be a bug in the application code.

Two examples of these problems are the following:

(1) HP Fortran 77 and Fortran 90 support a limited number of continuation
lines. Since the limitation applies to compiler directives as well, a
problem can arise if there are a large number of private variables.
Unfortunately, rather than stating what the problem is, the compiler
just gives the internal error message.

(2) The compiler did not seem to work well with code generated by a KAI
tool that converted SGI directives to OpenMP. When it was specified
that variables should default to SHARED, matters improved. Most of
the error messages disappeared, and the job seemed to run correctly.

l On IBM systems, there is a problem that if an OpenMP job tries to use all of
the processors, then it is competing with the operating system for the
attention of a processor. OpenMP jobs tend to be relatively fine-grained;
thus, if the operating system needs 5% of a processor’s attention, then the
other processors will spend 5% of their time spinning while waiting for the
last thread to catch up. Obviously, the problem gets worse as the number
of processors in the system increases because the number of processors
sitting at a spin lock increases, while the amount of time required by the

operating system can also increase. On the IBM SP, problems are even
worse, such as the following:

(1) When performing mixed-mode programming with MPI going between
nodes, servicing MPI requests from other processors will also require
the attention of a processor, slowing things down even more.

(2) Asynchronous transfer of data between nodes can also put a strain on
the memory system, which, in the case of some configurations, is
already stretched fairly thin.

l KAI’s implementation of OpenMP is based on P&reads. As such, it should
add extra overhead relative to a native implementation. However, our
benchmark results so far do not show this to be a problem, and sometimes
the KAI compiler outperforms the vendor compiler.

4. Tools for OpenMP

The TotalView debugger from Etnus provides facilities for debugging OpenMP
programs as well as for mixed MPI and OpenMP programs [3]. TotalView is
available for a large number of platforms and is installed on some
Shared Resource Center (SRC) machines. The previous version (4.1) had some
problems debugging threaded programs (such as OpenMP) on some platforms
(such as SGI), but this problem appears to have been fixed in version 5.
TotalView works with both vendor and KAI OpenMP compilers.

The KAI KAPPro toolset includes the Guide compiler, the Assure debugger, and
the GuideView performance analysis tool for OpenMP, which are described as
follows:

l Guide is a cross-platform implementation of OpenMP for C, C++, and
Fortran.

. The Assure component of the KAP/Pro toolset validates the correctness of
parallel OpenMP programs and identifies programming errors that
occurred when parallehzing a sequential application. The inputs to Assure
are an OpenMP parallel program that is assumed to run correctly in
sequential mode and a data set for that program. When the Assure-
processed program is run, Assure simulates parallel execution and
identifies errors where the parallel program is inconsistent with the
corresponding sequential program. Assure can display its results using the
AssureView graphical user interface or a comman d-line interface.

l The GuideView component provides an instrumented run-time library that
captures timing information for detecting and diagnosing performance

4

problems in OpenMP parallel programs. The graphical interface provides
browsing through performance data to identify parallel regions or loops
that require attention.

Performance Application Progra rnming Interface (PAPI) is a specification and
reference implementation of a cross-platform library interface to hardware
counters [4, 51. These counters exist as a small set of registers that count
“events,” which are occurrences of specific signals, and states related to the
processor’s function. Monitoring these events facilitates correlation between the
structure of source/object code and the efficiency of the mapping of that code to
the underlying architecture. This correlation has a variety of uses in performance
analysis and tuning. PAPI virtualizes the counters on a per-process and per-
thread basis and can be used for analysis of threaded programs including
OpenMP. PAPI is being installed on some SRC machines.

Vampir is a performance analysis tool for MPI parallel programs developed by
Pallas in Germany. Vampir is available on some SRC machines. The next
version of VAMPIR will support OpenMP in addition to MPI. Pallas and
Intel/KAI are developing a new performance analysis toolset for combined MI’1
and OpenMP progra rnming which uses PAP1 to access the hardware
performance counters. PAPI’s standard performance metrics, which include
metrics for shared memory processors (SMPs), will provide accurate and
relevant performance data for the clustered SMP environments targeted by the
new tool set.

5. Conclusions and Future Work

OpenMP implementations have matured and will continue to do so.
Implementations of OpenMP 2.0 for Fortran will hopefully begin to appear soon.
OpenMP is becoming a viable option for scalable parallel programming on
shared-memory platforms. We plan to continue our benchmarking work and
will investigate possible solutions to performance problems encountered on
various platforms.

For example, when using the C$doacross directives on SGI, sometimes the
optimal solution is to specify INTERLEAVE, which is equivalent to STATIC
scheduling with a CHUNK SIZE of 1. Alternatively, sometimes the optimal
solution will be to specify STATIC and let the CHUNK SIZE default. In this case,
the default is not 1, rather it is the largest CHUNK SIZE that will result in a
uniform distribution of work among the processors (within the limitations of
integer division). We plan to investigate use of this optimization with the EPCC
scheduling benchmark.

5

SGI Origin 3000,400 MHz, MIPSPro f90,
8 threads

Q 10000000
t 1000000

: looooo :

1 2 4 8 16 32 64 128

Chunk Size

- a- * dynamic, n

Figure 1. Scheduling overheads on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000,400 MHz, MIPSPro f90,
8 threads

3 3 10000000 10000000
3 3 1000000 1000000
24 24 100000 100000
g g ‘3 ‘3 10000 10000
a a 1000 1000
3 3 100 100
E E 3 3 10 10
6 6 1 1

1 1 2 2 4 4 8 8 16 16 32 32 64 64 128 128

Chunk Size Chunk Size

Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide compiler. Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide compiler.

SunEl0000,400MHz,SunFortef95,8threads

10000000 ;I

1000000

100000

10000 L

1000

100

10

1
12 4 8 16 32 64 128

Chunksize

Figure 3. Scheduling overheads on a Sun El0000 with the vendor compiler.

SunE10000,400MHz, Guide3.9 (guidef90),
8 threads

z 1000000

z 100000
i g 10000

3 1000
a 8 100
4 8 10

6 1
1 2 4 8 16 32 64 128

Chunk size
Figure 4. Scheduling overheads on a Sun El0000 with the Guide compiler.

7

IBM Power3 SMP, 375 MHz, xlf90-r, 4 threads

1000

100

10

1 I I I I I r I

1 2 4 8 16 32 64 128

Chunk size

Figure 5. Scheduling overheads on an IBM Power3 SMP with the vendor compiler.

SGI Origin 3000,400 MHz, MIPSpro f’91)

3 14100

= 3 12100

a 10100
: 3 8100

V
a 6100
3

E 4100

* a
v/ J/i;

Parallel Do I
1 2 3 4 5 6 7 8

Number of threads

Figure 6. Synchronization overheads on an !XI Origin 3000 with the vendor compiler.

8

SGI Origin 3000,400 MHz, Guide 3.9 (guidef90)

50000 1
2 Q) 45000
z
uh 40000 35000 I
3 30000 1
s u 25000 I

a 20000
!

2 15000 lI. a
E
b

8

-t-Parallel

+- ‘Barrier

1 2 3 4 5 6 7 8

Number of threads

Figure 7. Synchronization overheads on an SGI Origin 3000 with the Guide compiler.

Sun ElOOOO, 400 MHz, Sun Forte f!95

~ 35000
+ 30000
z 25000
St 20000 I
$ 15000 I
1 10000 I Y c

p 5000 ’ ,%I

O o-

,M
&&lr I 1 I I I I I I I

1 2 3 4 5 6 7 8

Number of threads

-+-Parallel
-M-Do

+ #Barrier

Figure 8. Synchronization overheads on a Sun El0000 with the vendor compiler.

9

Sun ElOOOO, 400 MHz, Guide 3.9 (guide f90)

+ Parallel

+Do
Parallel Do

--C ‘Barrier
4% -Single

1 2 3 4 5 6 7 8

Number of threads

Figure 9. Synchronization overheads on a Sun El0000 with the Guide compiler.

IBM Power3 SMP, 375 MHz, xlf90-r

jf 350000
“u
G

300000
L& 250000

2 200000
2

Parallel Da

150000
2 100000
b 50000

d O-
1 2 3 4 5 6 7 8

Number of threads

Figure 10. Synchronization overheads on an IBM Power3 SMP with the vendor compiler.

10

SGI Origin 3000,400 MHz, MIPSpro f77

19500
18000
16500
15000
13500

$ 12000
8 10500

6000
4500
3000
1500

I I I

A

0: - , I I I I I

4 8 16 32 64 128
Number of Threads

Figure 11. PBN BT benchmark on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000,400 MHz, MIPSpro f77

2400
2100
1800

+ 1500
%

F?

1200
900
600
300

0
4 8 16 32 64 128

Number of threads

Figure 12. PBN CG benchmark on an SGI Origin 3000 with the vendor compiler.

11

SGI Origin 3000,40OMHz, MIPSpro f77

(II
&

7000
6000

2 5000
5 4000

3000
2000
1000

0
4 8 16 32 64 128

Number of threads

Figure 13. PBN LU benchmark on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000,40OMHz, MIPSPro f77

4 8 16 32 64 128

Number of threads

-SPA rl +SPB
-A- SPC

Figure 14. PBN SP benchmark on an SGI Origin 3000 with the vendor compiler.

12

6. References

1.

2.

3.

4.

5.

Open&P website. <http:// www.openmp.org/>.

BuJl, M. J. “Measuring Synchronization and Scheduling Overheads on
OpenMl?.” Proceedings of the First European Workshop on OpenMP
(EWOMP ‘99), Lund, Sweden, 1999.

Browne, S., and J. Cownie. “OpenMP Debugging With TotalView.”
Proceedings of the Workshop on OpenMP Applications and Tools, July 2000.

Browne, S., J. J. Dongarra, N. Gamer, G. Ho, and P. Mucci. “A Portable
Progr amming Interface for Performance Evaluation on Modem Processors.”
International Journal of High Performance Computing Applications, vol. 14, no. 3,
pp. 189-204,ZOOO.

Browne, S., J. J. Dongarra, N. Gamer, K. London, and P. Mucci. “A Scalable
Cross-Platform Infrastructure for Application Performance Optimization
Using Hardware Counters.” Proceedings of SCZOOO, Dallas, TX, November
2000.

13

14

NO. OF
COPIES

2

1

ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC OCA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

HQDA
DAMOFDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ODDR&E(R)
DRRJTREW
3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDA TF
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

US MILITARY ACADEMY
MATH SC1 CTR EXCELLENCE
MADN MATH
THAYER HALL
WEST POINT NY 10996-1786

DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
DRDSMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R
2800 POWDER MILL RD
ADELPHI MD 207831197

NO. OF
ORGANIZATION COPIES

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI IS T
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

2 DIR USARL
AMSRL CI LP (BLDG 305)

15

NO. OF
COPIES

1

1

1

1

1

ORGANIZATION

HF’CMO
C HENRY
PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
L DAVIS
DI’lY PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
V THOMAS
DISTRIB CTRS PRJT OFCR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
J BAIRD
HPC CI-RS PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HF’CMO
L PERKINS
CHSSI PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

RICEUNlVERSlTY
M BEHR
MECHL ENGNRG MTRLS SC1
6100 MAIN ST MS 321
HOUSTON TX 77005

RICE UNIVERSITY
T TEZDUYAR
MECL ENGRG MTRLS SC1
6100 MAIN ST MS 321
HOUSTON TX 77005

J OSBURN
CODE 5594
4555 OVERLOOK RD
BLDG A49 RM 15
WASHINGTON DC 20375-5340

NO. OF
ORGANIZATION COPIES

1 NAVAL RSRCH LAB
J BORIS
CODE 6400
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 NAVAL RSRCH LAB
D PAF’ACONSTANTOPOULOS
CODE 6390
WASHINGTON DC 20375-5000

1 NAVAL RSRCH LAB
G HEBURN
RSRCH OCNGRPHR CNMOC
BLDG 1020 RM 178
STENNIS SPACE Cl-R MS 39529

1 AIR FORCE RSRCH LAB DEHE
R PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

1 AIR FORCE RSRCH LAB
INFO DIRCTRT
R W LINDERMAN
26 ELECI-RONIC PKWY
ROME NY X3441-4514

1 R A WASILAUSKY
SPAWARSYSCEN D4402
BLDG 33 RM 007lA
53560 HULL ST
SAN DIEGO CA 92152-5001

1 USAE WTRWYS EXPRMNT STA
cEwEsHvc
J P HOLLAND
3909 HALLS FERRY RD
VICKSBURG MS 391806199

1 USA CECOM RDEC
AMSEL RD C2
B S PERLMAN
FT MONMOUTH NJ 07703

1 SPACEANDNVLWRFRSYSCI’R
K BROMLEY
CODE D7305 BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

16

NO. OF
ORGANIZATION COPIES

3 USA HPCRC
B BRYAN’
P MUZIO
V KUMAR
1200 WASHINGTON AVE
S MINNEAPOLIS MN 55415

1 USA HPCRC
G V CANDLER
1200 WASHINGTON AVE
S MINNEAPOLIS MN 55415

1 NCCOSC
L PARNELL
NCCOSC RDTE DIV D3603
49490 LASSING RD
SAN DIEGO CA 92152-6148

1 UNIVERSITY OF TENNESSEE
S MOORE
INNOVATIVE COMPUTER LAB
1122 VOLUNTEER BLVD STE 203
KNOXVILLE TN 379963450

1 SDSC UNIV OF CA SAN DIEGO
A SNAVELY
9500 GILMAN DR
LA JOLLA CA 920930505

1 NCSA
152 CAB
S SAARINEN
605 E SPRINGFIELD AVE
CHAIvlPAIGN IL 61820

1 USA ERDC
DDUFFY
CMPTTNL MGRTN GRF
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

1 USA ERDC
J HENSLEY
(3vlITTN-L MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

NO. OF
ORGANIZATION COPIES

1 USA ERDC
T OPPE
CMMTNL MGRTN GRP
MAJOR SHARED RESRC Cl-R
VICKSBURG MS 39180

1 USA ERDC
W WARD
CXPTTNL MGRTN GRF’
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

1 USA ERDC
R ALTER
CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

ABERDEEN PROVING GROUND

20 DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CI H

C NIETUBICZ
STHOMPSON

AMSRL CI HC
PCHLJNG
JCL=
D GROVE
D HISLEY
M HURLEY
AMARK
D PRESSEL
R NAMBURU
DSHTRES
R VALISETTY
C ZOLTANI

AMSRL CI HI
A PRESSLEY

AMSRL CI HS
D BROWN
T KENDALL
PMATTHEWS
KSMlTH
RPRABHAKARAN

1 USA ERDC
M FAHEY
CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

17

18

REPORT DOCUMENTATION PAGE Fom Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average I hour per response, including the time for reviewing instruction*, searching existing data sources.
gathering and maintaining the data needed. and completing and reviewing the collection 01 information. Send comments regarding this burden estimte or any other aspect of this
collection of information. including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for l”fomMio” Opentlon~ and Reports. 1215 Jefferson
Dads Hiqhwav. Suite ,204. Minqto”. “A 222024302, and to the Office of Manaqement and Budqet, Pamwork Redwtion Pro,ect,07060188,. Washinqton. DC 20333.

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 2002 1 Ott 2000-l Jun 2001
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Reality Check on OpenMP Implementations 665803.731

6. AUTHOR(S)

Shirley Moore, * Daniel Pressel, and Juan Carlos Chaves ’

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 2 1005-5067

8. PERFORMING ORGANlZATlON
REPORT NUMBER

ARL-TR-27 18

3. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS 10.SPONSORINGIMONITORlNG
AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES
* University of Tennessee, Knoxville, TN 37996

+ HPTiiMajor Shared Resource Center, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005

l2a. DlSTRlBUTlON/AVAlLABlLlTY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

3penMP is a proposed industry standard Application Programmer Interface (API) that supports shared-memory parallel
3rogramming in Fortran and C/C++ on architectures including Unix, Linux, and Windows NT platforms. This report
liscusses experiences using OpenMP implementations on Shared Resource Center (SRC) platforms. The experiences
nclude running OpenMP benchmarks, as well as using OpenMP with applications. Tools available for debugging and
malyzing OpenMP programs are also covered. Most of the results in this report should be considered preliminary and
he basis for further investigation.

14. SUBJECT TERMS

benchmarking, OpenMP, supercomputing
15. NUMBER OF PAGES

22
16. PRICE CODE

7. SECURITY CLASSIFICATION 18. SECURIM CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
c&.“.-!e.A ted”. -Jno ID,.., 10.3,

19
OLClllUalU r”llll La” \ r \G ” . L-UC.,

Prescribed by ANSI Std. 239-l 8 298-l 02

20

